Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

نویسندگان

  • Ben J. Evison
  • Oula C. Mansour
  • Ernesto Menta
  • Don R. Phillips
  • Suzanne M. Cutts
چکیده

Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug-DNA adducts. Despite identification of this novel form of mitoxantrone-DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug-DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone-DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone-DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone-DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37 degrees C when compared to mitoxantrone-DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug-DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone-DNA adducts to be biologically active.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CpG methylation potentiates pixantrone and doxorubicin-induced DNA damage and is a marker of drug sensitivity

DNA methylation is an epigenetic modification of the mammalian genome that occurs predominantly at cytosine residues of the CpG dinucleotide. Following formaldehyde activation, pixantrone alkylates DNA and particularly favours the CpG motif. Aberrations in CpG methylation patterns are a feature of most cancer types, a characteristic that may determine their susceptibility to specific drug treat...

متن کامل

A molecular understanding of mitoxantrone-DNA adduct formation: effect of cytosine methylation and flanking sequences.

When mitoxantrone is activated by formaldehyde it can form adducts with DNA. These occur preferentially at CpG and CpA sequences and are enhanced 2-3-fold at methylated CpG sequences compared with non-methylated sites. We sought to understand the molecular factors involved in enhanced adduct formation at these methylated sites. This required, first, clarification of factors that contributed to ...

متن کامل

Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts.

Recently we have found that mitoxantrone, like Adria-mycin, can be activated by formaldehyde and subsequently form adducts which stabilise double-stranded DNA in vitro. This activation by formaldehyde may be biologically relevant since formaldehyde levels are elevated in those tumours in which mitoxan-trone is most cytotoxic. In vitro transcription analysis revealed that these adducts block the...

متن کامل

Clear differences in levels of a formaldehyde-DNA adduct in leukocytes of smokers and nonsmokers.

Formaldehyde is considered carcinogenic to humans by the IARC, but there are no previous reports of formaldehyde-DNA adducts in humans. In this study, we used liquid chromatography-electrospray ionization-tandem mass spectrometry to quantify the formaldehyde-DNA adduct N(6)-hydroxymethyldeoxyadenosine (N(6)-HOMe-dAdo) in leukocyte DNA samples from 32 smokers of >or=10 cigarettes per day and 30 ...

متن کامل

Isolation and structural analysis of the covalent adduct formed between a bis-amino mitoxantrone analogue and DNA: a pathway to major-minor groove cross-linked adducts.

The major covalent adduct formed between a 13C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CG5MeCGCG)2 has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G2 residue, with the polycyclic ring structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007